skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Biagioli, Francis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Predator and prey traits are important determinants of the outcomes of trophic interactions. In turn, the outcomes of trophic interactions shape predator and prey trait evolution. How species' traits respond to selection from trophic interactions depends crucially on whether and how heritable species' traits are and their genetic correlations. Of the many traits influencing the outcomes of trophic interactions, body size and movement traits have emerged as key traits. Yet, how these traits shape and are shaped by trophic interactions is unclear, as few studies have simultaneously measured the impacts of these traits on the outcomes of trophic interactions, their heritability, and their correlations within the same system.We used outcrossed lines of the ciliate protistParamecium caudatumfrom natural populations to examine variation in morphology and movement behaviour, the heritability of that variation, and its effects onParameciumsusceptibility to predation by the copepodMacrocyclops albidus.We found that theParameciumlines exhibited heritable variation in body size and movement traits. In contrast to expectations from allometric relationships, body size and movement speed showed little covariance among clonal lines. The proportion ofParameciumconsumed by copepods was positively associated withParameciumbody size and velocity but with an interaction such that greater velocities led to greater predation risk for large body‐sized paramecia but did not alter predation risk for smaller paramecia. The proportion of paramecia consumed was not related to copepod body size. These patterns of predation risk and heritable trait variation in paramecia suggest that copepod predation may act as a selective force operating independently on movement and body size and generating the strongest selection against large, high‐velocity paramecia.Our results illustrate how ecology and genetics can shape potential natural selection on prey traits through the outcomes of trophic interactions. Further simultaneous measures of predation outcomes, traits, and their quantitative genetics will provide insights into the evolutionary ecology of species interactions and their eco‐evolutionary consequences. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025